Introduction |
|
xxv | |
Part I Initialization and Project Planning |
|
3 | (98) |
|
1 Motivation for Building a Data Warehouse |
|
|
3 | (20) |
|
What Is a Data Warehouse? |
|
|
5 | (1) |
|
What a Data Warehouse Is Not |
|
|
5 | (3) |
|
User Access to Data: A Historical Perspective |
|
|
6 | (1) |
|
Summary of Historical Data Access Problems |
|
|
7 | (1) |
|
The Data Warehouse Context: Facilitate Business |
|
|
8 | (2) |
|
|
10 | (1) |
|
Business Drivers for the Data Warehouse |
|
|
11 | (3) |
|
|
14 | (5) |
|
Solving the Integration Problem |
|
|
14 | (5) |
|
|
19 | (3) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
Data Integration and Data Semantics |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
2 Data Warehouse Architecture |
|
|
23 | (14) |
|
Six Steps to Develop the Architecture |
|
|
24 | (1) |
|
The Data Warehouse Infrastructure |
|
|
25 | (6) |
|
Data Warehouse System Infrastructure |
|
|
26 | (2) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (1) |
|
Data Management Architecture: Data Layers |
|
|
31 | (3) |
|
Ongoing Maintenance: Warehouse Infrastructure |
|
|
34 | (1) |
|
|
35 | (2) |
|
3 Methodology and Project Management |
|
|
37 | (30) |
|
|
38 | (1) |
|
Why the Data Warehouse Methodology Is Different |
|
|
39 | (1) |
|
Sample Data Warehouse Methodology |
|
|
40 | (15) |
|
|
40 | (5) |
|
Phase One: Define Objectives and Scope |
|
|
45 | (2) |
|
Phase Two: Define Architecture |
|
|
47 | (1) |
|
Phase Three: Begin to Build Infrastructure |
|
|
48 | (1) |
|
Phase Four: Begin First Iteration |
|
|
49 | (3) |
|
Phase Five: Set Up Ongoing Maintenance Processes, First Iteration |
|
|
52 | (1) |
|
Phase Six: Set Up User Analysis Environment, First Iteration |
|
|
53 | (1) |
|
Phase Seven: Release First Iteration, Begin Second Iteration |
|
|
54 | (1) |
|
Customizing the Methodology |
|
|
55 | (4) |
|
|
56 | (1) |
|
Using Individual Interviews Instead of JAD Sessions |
|
|
57 | (1) |
|
Changes You Should Never Make |
|
|
58 | (1) |
|
Project Management: The Art of Finding Problems |
|
|
59 | (2) |
|
Setting and Resetting Expectations |
|
|
61 | (1) |
|
|
61 | (1) |
|
The Heart of a Champion (with the Strength of a Gorilla) |
|
|
61 | (1) |
|
Public Relations: Delighting the End User |
|
|
62 | (3) |
|
|
62 | (1) |
|
|
63 | (1) |
|
Sizing and Long Range Sizing Plan |
|
|
63 | (1) |
|
Metadata and Data Dictionaries |
|
|
63 | (1) |
|
|
64 | (1) |
|
Extraction and/or Transformation Software |
|
|
64 | (1) |
|
Populating the Data Warehouse |
|
|
65 | (1) |
|
|
65 | (1) |
|
Helpful Hints for Data Warehouse Project Managers |
|
|
65 | (1) |
|
|
66 | (1) |
|
4 Surefire Ways to Make Your Warehouse Fail |
|
|
67 | (34) |
|
What Is a Fatal Error (or What Is Project Success)? |
|
|
70 | (1) |
|
Fatal Errors--A Non-Exhaustive List |
|
|
71 | (16) |
|
Neglect Executive Sponsorship |
|
|
71 | (1) |
|
Avoid Sharing the Project with an End-User Project Manager |
|
|
71 | (2) |
|
Limit End-User Involvement |
|
|
73 | (1) |
|
Use a Classic "Waterfall" Project Methodology |
|
|
74 | (1) |
|
Use a Technical Project Manager without Data Warehouse Experience |
|
|
75 | (1) |
|
Freeze the Specification as Early as Possible |
|
|
75 | (1) |
|
Work Multiple Projects in Parallel |
|
|
76 | (1) |
|
Simultaneously Implement Operational Systems and Related Warehouses |
|
|
76 | (1) |
|
Postpone or Avoid Metadata |
|
|
77 | (1) |
|
Focus on Technology First |
|
|
77 | (2) |
|
Create Your Own Data Warehouse Software |
|
|
79 | (1) |
|
Rely on Unproved Technology |
|
|
80 | (1) |
|
Rely on "Silver Bullet" Technology |
|
|
80 | (2) |
|
Run OLAP on Top of the Operational Database |
|
|
82 | (1) |
|
Run the Data Warehouse Database on the Server for the Operational System |
|
|
83 | (1) |
|
Use Normalized Data Structures |
|
|
83 | (1) |
|
Define a Complex Warehouse Architecture |
|
|
84 | (1) |
|
|
85 | (1) |
|
Ignore Data Movement Metrics |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
87 | (1) |
|
How You Can Contribute to Project Success |
|
|
88 | (7) |
|
|
89 | (1) |
|
The End-User Department(s) |
|
|
90 | (1) |
|
Project Managers and Project Leaders |
|
|
90 | (1) |
|
IT/IS Management (Also for Consulting Managers) |
|
|
91 | (3) |
|
Technical Team Members (Whether in IT/IS or in a Consulting Organization) |
|
|
94 | (1) |
|
|
95 | (6) |
Part II Preparation: Integration and Cleansing |
|
101 | (104) |
|
5 Data Integration: The Challenges |
|
|
101 | (18) |
|
|
102 | (7) |
|
Data Marts: Propagation of Data Chaos |
|
|
105 | (3) |
|
|
108 | (1) |
|
PCs and Client/Server Development |
|
|
108 | (1) |
|
Heterogeneous Technologies |
|
|
109 | (1) |
|
The Compelling Need for Semantic Integration |
|
|
110 | (2) |
|
The Ramifications of Not Performing Semantic Integration |
|
|
110 | (1) |
|
Same Fact? How Can You Be Sure? |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
113 | (2) |
|
|
113 | (1) |
|
|
113 | (1) |
|
|
113 | (1) |
|
|
113 | (1) |
|
|
114 | (1) |
|
Solution: Integration and Prevention |
|
|
115 | (2) |
|
|
117 | (2) |
|
|
119 | (32) |
|
Qualities of Good Definitions |
|
|
120 | (1) |
|
Definitions as Business Rules |
|
|
120 | (1) |
|
Two Different Kinds of Definitions |
|
|
121 | (6) |
|
|
122 | (1) |
|
Business Term Definitions |
|
|
122 | (1) |
|
Bringing the Two Definitions Together |
|
|
123 | (2) |
|
Stepping Toward the Future |
|
|
125 | (2) |
|
Discrepancies Between the Present and the Past |
|
|
127 | (3) |
|
|
128 | (1) |
|
Changing Unique Identifiers |
|
|
128 | (1) |
|
Historical Definitions and Names |
|
|
129 | (1) |
|
Tracking Historical Fields |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
131 | (3) |
|
|
133 | (1) |
|
|
134 | (11) |
|
|
134 | (1) |
|
Abbreviations as Attributes |
|
|
135 | (1) |
|
Issues with Names as Attributes |
|
|
135 | (1) |
|
|
135 | (1) |
|
Database Naming Conventions |
|
|
135 | (1) |
|
|
136 | (8) |
|
Physical DDL Storage/Maintenance |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
145 | (4) |
|
Problems with Data Stewardship |
|
|
146 | (1) |
|
The Magilla Gorilla Factor |
|
|
147 | (2) |
|
|
149 | (2) |
|
|
151 | (26) |
|
|
152 | (1) |
|
|
152 | (10) |
|
|
153 | (1) |
|
Change Control in the Data Warehouse |
|
|
153 | (8) |
|
Business Metadata: Ideal World Scenario |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
163 | (2) |
|
What Buying a Repository "Buys You" |
|
|
163 | (1) |
|
What to Look for in Repositories |
|
|
164 | (1) |
|
Typical Metadata Elements |
|
|
165 | (3) |
|
The Metadata Coalition's Metamodel |
|
|
167 | (1) |
|
|
168 | (1) |
|
Integrating Metadata from Disparate Tools |
|
|
169 | (1) |
|
|
170 | (2) |
|
The Electronics Industries Association's CASE Data Interchange Format (CDIF) |
|
|
172 | (1) |
|
Other Integration Strategies |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
173 | (1) |
|
Metadata Access: Query Tools |
|
|
173 | (2) |
|
|
175 | (2) |
|
8 Data Quality and Scrubbing |
|
|
177 | (28) |
|
How Does Bad Data Affect the Business? |
|
|
178 | (3) |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
178 | (3) |
|
|
181 | (2) |
|
Situations That Highlight Dirty Data |
|
|
183 | (3) |
|
|
183 | (1) |
|
Integration of Information: Cross Referencing |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
Acquisition of Another Company |
|
|
186 | (1) |
|
The Data Cleansing Process |
|
|
186 | (6) |
|
Step 1: Data Discovery and Sleuthing |
|
|
187 | (1) |
|
Step 2: Categorize/Classify |
|
|
188 | (1) |
|
Step 3: Decide Action/Document |
|
|
188 | (2) |
|
Step 4a: Create Transforms/Generate Scrub Code |
|
|
190 | (1) |
|
Step 4b: Change Business Processes or Legacy Systems |
|
|
190 | (1) |
|
Step 5: Scrub Error Handling |
|
|
191 | (1) |
|
Step 6: Check for Metadata Drift Over Time |
|
|
192 | (1) |
|
Determining Data Meanings |
|
|
192 | (2) |
|
Two Different Kinds of Problems: Field versus Value |
|
|
192 | (1) |
|
Embedded Values: One Column, Different Values |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
194 | (2) |
|
Determining the Source of Record |
|
|
194 | (1) |
|
One Column, Different Sources |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
195 | (1) |
|
|
196 | (5) |
|
Sleuthing/Discovery Tools |
|
|
196 | (1) |
|
Extract/Transform/Code: Scrub Tools |
|
|
197 | (2) |
|
Tools That Address Specific Problems |
|
|
199 | (1) |
|
|
199 | (2) |
|
Documentation and Metadata |
|
|
201 | (1) |
|
|
202 | (3) |
Part III Logical and Physical Database Design |
|
205 | (166) |
|
9 Data Modeling Techniques and Options |
|
|
205 | (28) |
|
The Overall Design Process |
|
|
207 | (1) |
|
|
207 | (2) |
|
|
208 | (1) |
|
|
209 | (1) |
|
The Normalization Process |
|
|
209 | (11) |
|
|
209 | (7) |
|
Other Normalization Factors |
|
|
216 | (3) |
|
Benefits of Normalization |
|
|
219 | (1) |
|
Drawbacks of Normalization |
|
|
219 | (1) |
|
Normalization as the Baseline for Warehouse Design |
|
|
220 | (1) |
|
Denormalizing the Database |
|
|
220 | (11) |
|
Advantages of Denormalization |
|
|
220 | (1) |
|
Disadvantages of Normalization |
|
|
221 | (1) |
|
|
221 | (1) |
|
Basic Denormalization Techniques |
|
|
222 | (3) |
|
Changing Column Definition |
|
|
225 | (3) |
|
|
228 | (1) |
|
Data Partitioning/Fragmentation |
|
|
228 | (3) |
|
Referential Integrity in a Data Warehouse |
|
|
231 | (1) |
|
|
232 | (1) |
|
10 Dimensions and Query Hierarchies |
|
|
233 | (14) |
|
|
234 | (2) |
|
|
236 | (1) |
|
Granularity and Precision |
|
|
236 | (1) |
|
|
237 | (2) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
|
241 | (1) |
|
Hints for Constructing Dimensions and Hierarchies |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
243 | (1) |
|
Translate Codes for the User |
|
|
243 | (1) |
|
Keep the Codes in the Database |
|
|
243 | (1) |
|
Cubes, Drills, and Clusters |
|
|
243 | (3) |
|
|
246 | (1) |
|
11 Star Schema and Variants |
|
|
247 | (20) |
|
|
248 | (1) |
|
The Shape of a Star Schema |
|
|
249 | (6) |
|
Drill Downs Across Dimensions |
|
|
254 | (1) |
|
Problem Hierarchies: Time |
|
|
255 | (2) |
|
|
257 | (4) |
|
|
261 | (3) |
|
Drilling to Another Fact Table |
|
|
262 | (2) |
|
Common Dimensions in Data Warehouses |
|
|
264 | (1) |
|
|
264 | (2) |
|
Tuning Tips for Regular Star Optimization (Release 7.2 and Higher) |
|
|
264 | (1) |
|
Star Transformation Optimization Tips |
|
|
265 | (1) |
|
|
266 | (1) |
|
12 Spatial Data: A Very Special Dimension |
|
|
267 | (10) |
|
What Is So Special About Spatial Data? |
|
|
269 | (4) |
|
Oracle's Spatial Data Option |
|
|
273 | (2) |
|
HHCODE: A Slick Way to Formulate N-Dimension Spatial Intersections |
|
|
273 | (1) |
|
|
274 | (1) |
|
Other Key Features of the Spatial Data Option |
|
|
275 | (1) |
|
|
275 | (2) |
|
13 Storage Concerns and Planning |
|
|
277 | (40) |
|
Approaches to Storage Planning |
|
|
278 | (6) |
|
|
278 | (1) |
|
|
278 | (1) |
|
|
278 | (1) |
|
How to Slam-Dunk an Initial Estimate |
|
|
279 | (3) |
|
|
282 | (1) |
|
Planning for the Long Haul |
|
|
283 | (1) |
|
Analyzing Your Storage Requirements |
|
|
284 | (14) |
|
Extract Storage Requirements |
|
|
284 | (1) |
|
Data Cleaning Storage Requirements |
|
|
285 | (1) |
|
Data Transformation Storage Requirements |
|
|
286 | (1) |
|
|
287 | (1) |
|
|
288 | (1) |
|
The Operational Data Store (ODS) |
|
|
289 | (1) |
|
The Main Warehouse Database |
|
|
289 | (2) |
|
|
291 | (3) |
|
Query Workspace and Front-End Tools |
|
|
294 | (1) |
|
Query Results and Report Distribution |
|
|
294 | (1) |
|
|
294 | (1) |
|
|
295 | (1) |
|
|
295 | (2) |
|
Operating System Paging and Swap Space |
|
|
297 | (1) |
|
Physical Storage Planning |
|
|
298 | (13) |
|
|
298 | (1) |
|
Calculating Theoretical Size of Database Objects |
|
|
299 | (2) |
|
|
301 | (8) |
|
Physically Locating Your Data |
|
|
309 | (1) |
|
Old Style Physical Tuning |
|
|
309 | (1) |
|
RAID 5 Makes It Easier--But Not Free |
|
|
309 | (2) |
|
|
311 | (3) |
|
Monitoring Storage Utilization |
|
|
314 | (1) |
|
|
315 | (2) |
|
14 Physical Database Design |
|
|
317 | (20) |
|
Design Is About Trade-Offs |
|
|
318 | (5) |
|
Denormalize, Normalize, Overnormalize |
|
|
318 | (3) |
|
|
321 | (1) |
|
|
322 | (1) |
|
Level of Detail (Granularity) Affects Physical Design |
|
|
323 | (1) |
|
|
324 | (4) |
|
Partition Views and Parallelism |
|
|
324 | (2) |
|
|
326 | (2) |
|
Partitioning on Dimensions Other Than Time |
|
|
328 | (1) |
|
Oracle Physical Design Considerations |
|
|
328 | (8) |
|
Consider Using Parallel Technology |
|
|
328 | (1) |
|
|
329 | (1) |
|
Striping and Object Placement |
|
|
330 | (1) |
|
|
331 | (1) |
|
|
332 | (1) |
|
|
332 | (1) |
|
|
332 | (1) |
|
Reclaim Space by Utilizing ALTER TABLE DEALLOCATE |
|
|
332 | (2) |
|
Explore the Hidden Parameters |
|
|
334 | (1) |
|
Define Temporary Tablespaces as TEMPORARY |
|
|
335 | (1) |
|
|
336 | (1) |
|
|
336 | (1) |
|
15 Exploiting Parallel Technology |
|
|
337 | (14) |
|
|
338 | (1) |
|
|
339 | (3) |
|
|
340 | (2) |
|
How Many Freelists Do You Need? |
|
|
342 | (1) |
|
Parallel Query Option (PQO) |
|
|
342 | (7) |
|
|
343 | (1) |
|
|
343 | (5) |
|
Distribution of Data to Maximize Parallelization |
|
|
348 | (1) |
|
|
349 | (2) |
|
|
351 | (20) |
|
|
352 | (5) |
|
|
352 | (2) |
|
|
354 | (1) |
|
|
355 | (1) |
|
|
356 | (1) |
|
|
357 | (5) |
|
|
358 | (1) |
|
When to Use Bitmap Indexes |
|
|
358 | (2) |
|
CREATE BITMAP INDEX Syntax |
|
|
360 | (1) |
|
|
360 | (1) |
|
|
361 | (1) |
|
Bitmap INIT.ORA Parameters |
|
|
361 | (1) |
|
|
362 | (5) |
|
|
362 | (1) |
|
|
363 | (3) |
|
Pre-Allocation of Space for a Hash Cluster |
|
|
366 | (1) |
|
|
366 | (1) |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
367 | (4) |
Part IV Management of a Data Warehouse |
|
371 | (94) |
|
|
371 | (16) |
|
|
372 | (3) |
|
|
372 | (1) |
|
|
373 | (2) |
|
|
375 | (3) |
|
Listing of User Privileges |
|
|
375 | (1) |
|
Listing of System Privileges |
|
|
376 | (1) |
|
Listing of Object Privileges |
|
|
376 | (1) |
|
|
377 | (1) |
|
|
378 | (1) |
|
|
378 | (7) |
|
|
379 | (1) |
|
Granting Privileges to Roles |
|
|
379 | (1) |
|
Granting Roles to Users or Roles |
|
|
380 | (1) |
|
|
380 | (1) |
|
Enabling Roles by Setting Default Roles |
|
|
380 | (1) |
|
|
381 | (1) |
|
Revoking Privileges from Roles |
|
|
382 | (1) |
|
Revoking Roles from Users or Roles |
|
|
382 | (1) |
|
|
382 | (1) |
|
Data Dictionary Role Views |
|
|
383 | (2) |
|
New Oracle8 Feature Regarding Passwords |
|
|
385 | (1) |
|
|
385 | (2) |
|
|
387 | (20) |
|
Developing a Backup Strategy |
|
|
388 | (3) |
|
Backup Strategies in NOARCHIVELOG Mode |
|
|
389 | (1) |
|
Backup Strategies in ARCHIVELOG Mode |
|
|
390 | (1) |
|
|
391 | (1) |
|
Performing Database Backups |
|
|
391 | (4) |
|
Listing the Files for Backup |
|
|
391 | (2) |
|
Performing Full Offline Backups |
|
|
393 | (1) |
|
Performing Online Partial Backups |
|
|
394 | (1) |
|
More About ARCHIVELOG Mode |
|
|
395 | (3) |
|
|
396 | (1) |
|
Steps to Enabling ARCHIVELOG Mode |
|
|
397 | (1) |
|
|
397 | (1) |
|
|
398 | (1) |
|
|
398 | (6) |
|
|
399 | (1) |
|
|
400 | (2) |
|
|
402 | (1) |
|
|
402 | (1) |
|
|
402 | (1) |
|
|
403 | (1) |
|
Recovery Tablespaces/Data Files |
|
|
403 | (1) |
|
|
404 | (3) |
|
|
407 | (24) |
|
|
408 | (2) |
|
|
410 | (2) |
|
|
410 | (1) |
|
|
411 | (1) |
|
Freezing Time Variant Data |
|
|
412 | (1) |
|
Designing Load Process Streams |
|
|
412 | (2) |
|
|
414 | (1) |
|
|
415 | (1) |
|
|
416 | (1) |
|
Back Out, Recovery, Restart |
|
|
417 | (1) |
|
|
418 | (4) |
|
|
422 | (2) |
|
Capacity Planning for Loads |
|
|
424 | (5) |
|
|
424 | (1) |
|
Disk and Tape Throughput Capacity |
|
|
425 | (1) |
|
|
426 | (1) |
|
Mainframe Channel, Front-End Processor, and Communication Processor Capacity |
|
|
426 | (3) |
|
|
429 | (2) |
|
20 Tuning Loads and Scrubs |
|
|
431 | (12) |
|
Why Are Loads and Scrubs Always a Performance Problem? |
|
|
432 | (1) |
|
|
433 | (1) |
|
Analyze the Load/Scrub Process |
|
|
433 | (1) |
|
|
434 | (2) |
|
Is the Initial Load Representative of Ominous Things to Come? |
|
|
434 | (1) |
|
Extracts and Data Movement |
|
|
434 | (1) |
|
Dealing with Incremental Loads |
|
|
435 | (1) |
|
|
435 | (1) |
|
|
436 | (1) |
|
Third-Party Load Products |
|
|
436 | (1) |
|
|
436 | (2) |
|
|
437 | (1) |
|
Network Strategy for an ODS |
|
|
437 | (1) |
|
|
438 | (3) |
|
Do What You Can on the Source System |
|
|
438 | (1) |
|
Dealing with Computed Fields |
|
|
439 | (1) |
|
Aggregate Processing Creativity |
|
|
440 | (1) |
|
What Do You Do About Referential Integrity? |
|
|
440 | (1) |
|
Use Common Tuning Techniques |
|
|
441 | (1) |
|
|
442 | (1) |
|
|
442 | (1) |
|
21 Memory Tuning and Other DBA Tuning Considerations |
|
|
443 | (22) |
|
|
444 | (12) |
|
|
447 | (5) |
|
|
452 | (4) |
|
Other Memory Considerations |
|
|
456 | (2) |
|
|
456 | (1) |
|
|
457 | (1) |
|
Utilities and Other Server Tuning |
|
|
458 | (4) |
|
|
458 | (1) |
|
Rule-Based versus Cost-Based Optimizer |
|
|
459 | (2) |
|
|
461 | (1) |
|
|
462 | (1) |
|
|
462 | (3) |
Part V Data Access |
|
465 | (174) |
|
|
465 | (14) |
|
PC and Spreadsheet: Killer Combo of the 1980s |
|
|
466 | (1) |
|
Data Warehouse and the Internet: Killer Combo for the 1990s? |
|
|
466 | (1) |
|
An Introduction to the Technologies of the Internet |
|
|
467 | (3) |
|
|
470 | (3) |
|
|
473 | (1) |
|
Connecting a Database to the Intranet |
|
|
474 | (1) |
|
|
475 | (1) |
|
Publishing and Delivery of Data Warehouse Data to the Intranet |
|
|
476 | (1) |
|
Querying the Data Warehouse Data from the Intranet |
|
|
476 | (1) |
|
|
477 | (2) |
|
|
479 | (42) |
|
What Is a Front-End Tool? |
|
|
482 | (1) |
|
Front-End Tool Terminology |
|
|
483 | (2) |
|
|
483 | (1) |
|
|
484 | (1) |
|
|
485 | (1) |
|
|
485 | (1) |
|
Traditional Programming Languages |
|
|
485 | (2) |
|
|
487 | (2) |
|
End-User Tools Versus Front-End Development Tools |
|
|
487 | (1) |
|
|
487 | (1) |
|
|
487 | (1) |
|
|
488 | (1) |
|
|
488 | (1) |
|
|
489 | (1) |
|
|
489 | (4) |
|
|
489 | (2) |
|
|
491 | (1) |
|
|
491 | (1) |
|
|
492 | (1) |
|
|
492 | (1) |
|
|
492 | (1) |
|
|
493 | (1) |
|
|
493 | (1) |
|
Developing the User Layer |
|
|
493 | (1) |
|
Front-End Tool Performance Issues |
|
|
494 | (5) |
|
The Correct Performance Tuning Method |
|
|
495 | (1) |
|
|
496 | (1) |
|
Sort Performance Problems |
|
|
496 | (1) |
|
|
497 | (1) |
|
|
497 | (1) |
|
|
498 | (1) |
|
Ease of Use: A Different Kind of Performance Tuning |
|
|
498 | (1) |
|
Selecting Front-End Tools |
|
|
499 | (15) |
|
|
500 | (7) |
|
|
507 | (4) |
|
|
511 | (2) |
|
|
513 | (1) |
|
Tools for Requirements Gathering |
|
|
514 | (2) |
|
|
516 | (3) |
|
|
519 | (2) |
|
|
521 | (22) |
|
|
522 | (2) |
|
Data Mining Approaches and Models |
|
|
524 | (1) |
|
The Methods Behind Data Mining |
|
|
524 | (9) |
|
|
525 | (1) |
|
Simple Descriptive Statistics |
|
|
526 | (2) |
|
Linear (and Other) Regression Analysis |
|
|
528 | (1) |
|
|
529 | (1) |
|
|
530 | (1) |
|
|
531 | (2) |
|
How Data Mining Fits with Data Warehousing |
|
|
533 | (3) |
|
|
536 | (1) |
|
|
536 | (2) |
|
|
538 | (3) |
|
|
541 | (2) |
|
|
543 | (44) |
|
|
544 | (4) |
|
|
545 | (1) |
|
|
545 | (1) |
|
|
546 | (1) |
|
|
546 | (1) |
|
|
547 | (1) |
|
|
548 | (1) |
|
Query Optimization Techniques |
|
|
548 | (9) |
|
|
548 | (2) |
|
|
551 | (1) |
|
|
551 | (1) |
|
|
551 | (1) |
|
Index Suppression Examples |
|
|
552 | (1) |
|
Forcing Index Suppression |
|
|
552 | (1) |
|
|
553 | (1) |
|
|
553 | (1) |
|
|
554 | (1) |
|
Query Optimization--OR / UNION |
|
|
555 | (1) |
|
Query Optimization--NOT EXISTS |
|
|
555 | (1) |
|
Query Optimization--Combine |
|
|
556 | (1) |
|
|
557 | (19) |
|
|
557 | (1) |
|
|
558 | (2) |
|
|
560 | (16) |
|
|
576 | (7) |
|
|
576 | (3) |
|
|
579 | (2) |
|
Interpreting the TKPROF Results |
|
|
581 | (2) |
|
Query Tuning for the Star Schema |
|
|
583 | (3) |
|
Tuning Tips for Regular Star Optimization (Releases 7.2 and Higher) |
|
|
584 | (1) |
|
Star Transformation Optimization Tips |
|
|
585 | (1) |
|
|
586 | (1) |
|
|
587 | (28) |
|
|
589 | (19) |
|
|
590 | (3) |
|
|
593 | (2) |
|
|
595 | (1) |
|
The Mini-Warehouse Data Mart |
|
|
596 | (4) |
|
|
600 | (6) |
|
Mixed Data Mart Architectures |
|
|
606 | (2) |
|
|
608 | (2) |
|
|
610 | (2) |
|
Data Mart Implementation Tools |
|
|
610 | (1) |
|
The Oracle Data Mart Suite |
|
|
611 | (1) |
|
Oracle Express and Data Marts |
|
|
611 | (1) |
|
Data Mart Extremes--Some Perspective |
|
|
612 | (1) |
|
|
613 | (2) |
|
27 Operational Data Store and the Operational Environment |
|
|
615 | (24) |
|
Major Limitation of the Data Warehouse: Updates |
|
|
616 | (1) |
|
|
617 | (1) |
|
Architectures of DW and ODS |
|
|
618 | (3) |
|
Should the ODS Be Updated Directly? |
|
|
621 | (1) |
|
Determining the Source of Record |
|
|
622 | (2) |
|
|
624 | (2) |
|
Avoid Moving the Source of Record to the ODS |
|
|
626 | (2) |
|
|
628 | (1) |
|
Three Tier Architecture: Linking the Data Warehouse to the Operational Environment |
|
|
629 | (1) |
|
|
630 | (1) |
|
Integrating the ODS, Data Warehouse, and Operational Environment: Rule Diagnostics |
|
|
631 | (2) |
|
Implementing the Metadata Link |
|
|
633 | (2) |
|
|
635 | (4) |
Part VI Appendixes |
|
639 | (26) |
|
A Data Warehouse Checklists for Project Managers |
|
|
639 | (6) |
|
Critical Success Factors for Data Warehousing |
|
|
640 | (1) |
|
Key Tasks and Deliverables |
|
|
641 | (1) |
|
Eight Major Phases in Building the Data Warehouse |
|
|
642 | (1) |
|
|
642 | (3) |
|
|
645 | (4) |
|
C Survey of Conferences and Seminars |
|
|
649 | (4) |
|
Regular Conferences Specializing in Oracle |
|
|
650 | (1) |
|
Regular Conferences Specializing in Data Warehouse/Databases |
|
|
650 | (1) |
|
Other Conferences and Seminars of Interest |
|
|
651 | (2) |
|
D Survey of Publications and Journals |
|
|
653 | (4) |
|
Interesting Data Warehouse-Oriented Web Sites |
|
|
655 | (2) |
|
E Oracle8 Features for Data Warehousing |
|
|
657 | (4) |
|
|
658 | (1) |
|
|
658 | (1) |
|
|
659 | (1) |
|
|
659 | (1) |
|
|
659 | (1) |
|
Star Transformation Optimization |
|
|
660 | (1) |
|
|
660 | (1) |
|
|
660 | (1) |
|
|
661 | (4) |
Index |
|
665 | |