Mechanics of Aircraft Structures

by ;
Edition: 3rd
Format: Hardcover
Pub. Date: 2021-09-28
Publisher(s): Wiley
List Price: $180.26

Buy New

Usually Ships in 24-48 Hours
$171.68

Buy Used

Usually Ships in 24-48 Hours
$128.76

Rent Textbook

Select for Price
There was a problem. Please try again later.

Rent Digital

Rent Digital Options
Online:1825 Days access
Downloadable:Lifetime Access
$158.40
*To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.
$158.40*

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

Explore the most up-to-date overview of the foundations of aircraft structures combined with a review of new aircraft materials

The newly revised Third Edition of Mechanics of Aircraft Structures delivers a combination of the fundamentals of aircraft structure with an overview of new materials in the industry and a collection of rigorous analysis tools into a single one-stop resource. Perfect for a one-semester introductory course in structural mechanics and aerospace engineering, the distinguished authors have created a textbook that is also ideal for mechanical or aerospace engineers who wish to stay updated on recent advances in the industry.

The new edition contains new problems and worked examples in each chapter and improves student accessibility. A new chapter on aircraft loads and new material on elasticity and structural idealization form part of the expanded content in the book. The distinguished authors have included Python code on the companion website that readers can use to solve design optimization problems. Readers will also benefit from the inclusion of:

  • A thorough introduction to the characteristics of aircraft structures and materials, including the different types of aircraft structures and their basic structural elements
  • An exploration of load on aircraft structures, including loads on wing, fuselage, landing gear, and stabilizer structures
  • An examination of the concept of elasticity, including the concepts of displacement, strain, and stress, and the equations of equilibrium in a nonuniform stress field
  • A treatment of the concept of torsion

    Perfect for senior undergraduate and graduate students in aerospace engineering, Mechanics of Aircraft Structures will also earn a place in the libraries of aerospace engineers seeking a one-stop reference to solidify their understanding of the fundamentals of aircraft structures and discover an overview of new materials in the field.

  • Author Biography

    Chin-Teh Sun, PhD, is Neil A. Armstrong Distinguished Professor Emeritus of Aeronautics and Astronautics at Purdue University. Dr. Sun was the inaugural recipient of the AIAA-ASC James H. Starnes Award and the 2007 ASME Warner T. Koiter Medal.

    Ashfaq Adnan, PhD, is Professor in the Mechanical and Aerospace Engineering Department at the University of Texas at Arlington and a Fellow of ASME. His research focus is on deformation, damage, and failure of biological, bioinspired, and engineered materials at multiple length scales.

    Table of Contents

    CONTENTS

    Preface            xiii

    Preface to the First Edition            xv

    1          Characteristics of Aircraft Structures and Materials                                    1

    1.1       Introduction / 1

    1.2       Types of Aircraft Structures / 1

                1.2.1 Fixed-wing Aircraft / 1

                1.2.2 Rotorcraft / 2

                1.2.3 Lighter-than-air Vehicles / 2

                1.2.4 Drones / 2         

    1.3       Basic Structural Elements in Aircraft Structure / 3

    1.3.1    Fuselage / 3

    1.3.2    Wing / 3

    1.3.3    Landing Gear / 3

    1.3.4    Control Surfaces / 4

    1.4       Aircraft Materials / 4

    Problems / 6

     

    2          Loads on Aircraft Structures                                                                            7

    2.1       Introduction / 7          

    2.2       Basic Structural Elements / 7

    2.2.1    Axial Member / 7

    2.2.2    Shear Panel / 8

    2.2.3    Bending Member (Beam) / 9

    2.2.4    Torsion Member / 10

    2.3       Wing and Fuselage / 11

    2.3.1    Load Transfer / 11

    2.3.2    Wing Structure / 12

    2.3.3    Fuselage / 13

    Problems / 15

     

    3          Introduction to Elasticity                                                                                 18

    3.1       Introduction / 18

    3.2       Concept of Displacement / 19

    3.3       Strain / 21

    3.4       Stress / 26

    3.5       Equations of Equilibrium in a Uniform Stress Field / 28

    3.6       Equations of Equilibrium in a Nonuniform Stress Field / 30

     

    3.7       Stress Vector-Stress Component Relations / 32

    3.8       Principal Stress / 34

    3.9       Shear Stress / 37

    3.10     Stress Transformation / 39

    3.11     Linear Stress-Strain Relations / 41

    3.11.1  Strains Induced by Normal Stress / 42

    3.11.2  Strains Induced by Shear Stress / 45

    3.11.3  Three-Dimensional Stress-Strain Relations / 46

    3.12     Plane Elasticity / 51

    3.12.1  Stress-Strain Relations for Plane Isotropic Solids / 51

    3.12.2  Stress-Strain Relations for Orthotropic Solids in Plane Stress / 54

    3.12.3  Governing Equations / 55

    3.12.4  Solution by Airy Stress Function for Plane Isotropic Solids / 58

    3.12.5 Plane Elasticity Solutions in Polar Coordinate System / 60

    3.13     Formulations Beyond 2D Plane Elasticity / 64

    Problems / 66

    4          Torsion                                                                                                               74

    4.1       Introduction / 74

    4.2       Torsion of Uniform Bars with Arbitrary Cross-section/ 75

                4.2.1 Governing Equations / 75

                4.2.2 Boundary Conditions / 78

                4.3.3 Torque-Stress Relations / 79

                4.3.4 Warping Displacement / 80

                4.3.5 Torsion Constant / 80

    4.3       Bars with Circular Cross-Sections / 81

                4.3.1 Elasticity Approach using Prandtl Stress Function / 81

                4.3.2 Mechanics of Solid Approach / 84

    4.4       Bars with Narrow Rectangular Cross-Sections / 87

    4.5       Closed Single-Cell Thin-Walled Sections / 91

                4.5.1 The s-n coordinate system / 91

    4.5.2 Prandtl Stress Function / 93

    4.5.3 Shear Flow q / 94

    4.5.4 Shear Flow - Torque Relation / 95

                4.5.5 Twist Angle / 96

    4.5.6 Torsion Constant J / 99

    4.6       Multicell Thin-Walled Sections / 102

    4.7       Warping in Open Thin-Walled Sections / 107

    4.8       Warping in Closed Thin-Walled Sections / 111

    4.9       Effect of End Constraints / 113

    Problems / 120

    5          Bending and Flexural Shear                                                                           126

    5.1       Introduction / 126

    5.2       Bernoulli-Euler Beam Theory / 126

    5.2.1 Unidirectional Bending on Beams with

    a Symmetric Section / 126

    5.2.2 Bidirectional Bending on Beams with

    an Arbitrary Section / 132

    5.3       Structural idealization / 137

    5.4       Transverse Shear Stress due to Transverse Force in

    Symmetric Sections / 146

    5.4.1    Narrow Rectangular Cross-Section / 147

    5.4.2    General Symmetric Sections / 148

    5.4.3    Thin-Walled Sections / 150

    5.34.4  Shear Deformation in Thin-Walled Sections / 151

    5.5       Timoshenko Beam Theory / 154

    5.6       Saing-Venant’s Principle / 158

    5.7       Shear Lag / 162

    Problems / 165

    6          Flexural Shear Flow in Thin-Walled Sections                                              171

    6.1       Introduction / 171

    6.2       Flexural Shear Flow in Open Thin-Walled Sections / 171

    6.2.1    Symmetric Thin-Walled Sections / 172

    6.2.2    Unsymmetric Thin-Walled Sections / 176

    6.2.3    Multiple Shear Flow Junctions / 178

    6.2.4    Selection of Shear Flow Contour / 179

    6.3       Shear Center in Open Sections / 180

    6.4       Closed Thin-Walled Sections and Combined Flexural and

    Torsional Shear Flow / 186

    6.4.1    Shear Center / 187

    6.4.2    Statically Determinate Shear Flow / 191

    6.5       Closed Multicell Sections / 194

    Problems / 198

    7          Failure Criteria for Isotropic Materials                                                       205

    7.1       Introduction / 205      

    7.2       Strength Criteria for Brittle Materials / 205

    7.2.1    Maximum Principal Stress Criterion / 205

    7.2.2    Coulomb–Mohr Criterion / 206

    7.3       Yield Criteria for Ductile Materials / 208

    7.3.1    Maximum Shear Stress Criterion (Tresca Yield

    Criterion) in Plane Stress / 208

    7.3.2    Maximum Distortion Energy Criterion (von Mises

    Yield Criterion) / 210

    7.4       Fracture Mechanics / 215

    7.4.1    Stress Concentration / 215

    7.4.2    Concept of Cracks and Strain Energy Release Rate / 216

    7.4.3    Fracture Criterion / 218

    7.5       Stress Intensity Factor / 223

    7.5.1    Symmetric Loading (Mode I Fracture) / 223

    7.5.2    Antisymmetric Loading (Mode II Fracture) / 225

    7.5.3    Relation between K and G / 227

    7.5.4    Mixed Mode Fracture / 231

    7.6       Effect of Crack Tip Plasticity / 232

    7.7       Fatigue Failure / 235

    7.7.1    Constant Stress Amplitude / 235

    7.7.2    SN Curves / 235

    7.7.3    Variable Amplitude Loading / 236

    7.8       Fatigue Crack Growth / 236

    Problems / 239

    8          Elastic Buckling                                                                                               244

    8.1       Introduction

    8.2       Eccentrically Loaded Beam-Column / 244

    8.3       Elastic Buckling of Straight Bars / 245

    8.3.1    Pinned–Pinned Bar / 247

    8.3.2    Clamped–Free Bar / 250

    8.3.3    Clamped–Pinned Bar / 251

    8.3.4    Clamped–Clamped Bar / 252

    8.3.5    Effective Length of Buckling / 253

    8.4       Initial Imperfection / 254

    8.5       Postbuckling Behavior / 256

    8.6       Bar of Unsymmetric Section / 262

    8.7       Torsional–Flexural Buckling of Thin-Walled Bars / 265

    8.7.1    Nonuniform Torsion / 265

    8.7.2    Torsional Buckling of Doubly Symmetric Section / 267

    8.7.3    Torsional–Flexural Buckling / 269

    8.8       Elastic Buckling of Flat Plates / 275

    8.8.1    Governing Equation for Flat Plates / 273

    8.8.2    Cylindrical Bending / 275

    8.8.3    Buckling of Rectangular Plates / 276

    8.8.4    Buckling under Shearing Stresses / 279

    8.9       Local Buckling of Open Sections / 280

    Problems / 282

    9          Analysis of Composite Laminates                                                                  287

    9.1       Plane Stress Equations for Composite Lamina / 287

    9.2       Off-Axis Loading / 293

    9.3       Notation for Stacking Sequence in Laminates / 295

    9.4       Symmetric Laminate under In-Plane Loading / 296

    9.5       Effective Moduli for Symmetric Laminates / 299

    9.6       Laminar Stresses / 303

    9.7       [±45°] Laminate / 305

    Problems / 306

    Index                                                                                                                             308

    An electronic version of this book is available through VitalSource.

    This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

    By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

    Digital License

    You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

    More details can be found here.

    A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

    Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

    Please view the compatibility matrix prior to purchase.