|
|
1 | (24) |
|
1.1 The Double/Triple Whammy of Measurement Error |
|
|
1 | (1) |
|
1.2 Classical Measurement Error: A Nutrition Example |
|
|
2 | (1) |
|
1.3 Measurement Error Examples |
|
|
3 | (1) |
|
1.4 Radiation Epidemiology and Berkson Errors |
|
|
4 | (3) |
|
1.4.1 The Difference Between Berkson and Classical Errors: How to Gain More Power Without Really Trying |
|
|
5 | (2) |
|
1.5 Classical Measurement Error Model Extensions |
|
|
7 | (2) |
|
1.6 Other Examples of Measurement Error Models |
|
|
9 | (5) |
|
|
9 | (1) |
|
1.6.2 Nurses' Health Study |
|
|
10 | (1) |
|
1.6.3 The Atherosclerosis Risk in Communities Study |
|
|
11 | (1) |
|
1.6.4 Bioassay in a Herbicide Study |
|
|
11 | (1) |
|
1.6.5 Lung Function in Children |
|
|
12 | (1) |
|
1.6.6 Coronary Heart Disease and Blood Pressure |
|
|
12 | (1) |
|
1.6.7 A-Bomb Survivors Data |
|
|
13 | (1) |
|
1.6.8 Blood Pressure and Urinary Sodium Chloride |
|
|
13 | (1) |
|
1.6.9 Multiplicative Error for Confidentiality |
|
|
14 | (1) |
|
1.6.10 Cervical Cancer and Herpes Simplex Virus |
|
|
14 | (1) |
|
1.7 Checking the Classical Error Model |
|
|
14 | (4) |
|
|
18 | (5) |
|
1.8.1 Linear Regression Example |
|
|
18 | (2) |
|
1.8.2 Radiation Epidemiology Example |
|
|
20 | (3) |
|
|
23 | (1) |
|
|
23 | (2) |
|
|
25 | (16) |
|
2.1 Functional and Structural Models |
|
|
25 | (1) |
|
2.2 Models for Measurement Error |
|
|
26 | (6) |
|
2.2.1 General Approaches: Berkson and Classical Models |
|
|
26 | (1) |
|
2.2.2 Is It Berkson or Classical? |
|
|
27 | (1) |
|
2.2.3 Berkson Models from Classical |
|
|
28 | (1) |
|
2.2.4 Transportability of Models |
|
|
29 | (1) |
|
2.2.5 Potential Dangers of Transporting Models |
|
|
30 | (2) |
|
2.2.6 Semicontinuous Variables |
|
|
32 | (1) |
|
2.2.7 Misclassification of a Discrete Covariate |
|
|
32 | (1) |
|
|
32 | (1) |
|
2.4 Is There an "Exact" Predictor? What Is Truth? |
|
|
33 | (3) |
|
2.5 Differential and Nondifferential Error |
|
|
36 | (2) |
|
|
38 | (1) |
|
|
39 | (2) |
|
3 LINEAR REGRESSION AND ATTENUATION |
|
|
41 | (24) |
|
|
41 | (1) |
|
3.2 Bias Caused by Measurement Error |
|
|
41 | (11) |
|
3.2.1 Simple Linear Regression with Additive Error |
|
|
42 | (2) |
|
3.2.2 Regression Calibration: Classical Error as Berkson Error |
|
|
44 | (1) |
|
3.2.3 Simple Linear Regression with Berkson Error |
|
|
45 | (1) |
|
3.2.4 Simple Linear Regression, More Complex Error Structure |
|
|
46 | (3) |
|
3.2.5 Summary of Simple Linear Regression |
|
|
49 | (3) |
|
3.3 Multiple and Orthogonal Regression |
|
|
52 | (3) |
|
3.3.1 Multiple Regression: Single Covariate Measured with Error |
|
|
52 | (1) |
|
3.3.2 Multiple Covariates Measured with Error |
|
|
53 | (2) |
|
|
55 | (5) |
|
|
55 | (2) |
|
3.4.2 Orthogonal Regressions |
|
|
57 | (3) |
|
|
60 | (3) |
|
3.5.1 Theoretical Bias Variance Tradeoff Calculations |
|
|
61 | (2) |
|
3.6 Attenuation in General Problems |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (32) |
|
|
65 | (1) |
|
4.2 The Regression Calibration Algorithm |
|
|
66 | (1) |
|
|
66 | (4) |
|
4.4 Estimating the Calibration Function Parameters |
|
|
70 | (2) |
|
4.4.1 Overview and First 'Methods |
|
|
70 | (1) |
|
4.4.2 Best Linear Approximations Using Replicate Data |
|
|
70 | (2) |
|
4.4.3 Alternatives When Using Partial Replicates |
|
|
72 | (1) |
|
4.4.4 James-Stein Calibration |
|
|
72 | (1) |
|
4.5 Multiplicative Measurement Error |
|
|
72 | (7) |
|
4.5.1 Should Predictors Be Transformed? |
|
|
73 | (1) |
|
|
74 | (3) |
|
|
77 | (1) |
|
4.5.4 Additive and Multiplicative Error |
|
|
78 | (1) |
|
|
79 | (1) |
|
4.7 Expanded Regression Calibration Models |
|
|
79 | (11) |
|
4.7.1 The Expanded Approximation Defined |
|
|
81 | (2) |
|
|
83 | (2) |
|
|
85 | (5) |
|
4.8 Examples of the Approximations |
|
|
90 | (4) |
|
|
90 | (1) |
|
4.8.2 Logistic Regression |
|
|
90 | (3) |
|
4.8.3 Loglinear Mean Models |
|
|
93 | (1) |
|
|
94 | (1) |
|
4.9.1 Homoscedastic Regression |
|
|
94 | (1) |
|
4.9.2 Quadratic Regression with Homoscedastic Regression Calibration |
|
|
94 | (1) |
|
4.9.3 Loglinear Mean Model |
|
|
95 | (1) |
|
Bibliographic Notes and Software |
|
|
95 | (2) |
|
5 SIMULATION EXTRAPOLATION |
|
|
97 | (32) |
|
|
97 | (1) |
|
5.2 Simulation Extrapolation Heuristics |
|
|
98 | (2) |
|
5.2.1 SIMEX in Simple Linear Regression |
|
|
98 | (2) |
|
|
100 | (12) |
|
5.3.1 Simulation and Extrapolation Steps |
|
|
100 | (8) |
|
5.3.2 Extrapolant Function Considerations |
|
|
108 | (2) |
|
5.3.3 SIMEX Standard Errors |
|
|
110 | (1) |
|
5.3.4 Extensions and Refinements |
|
|
111 | (1) |
|
5.3.5 Multiple Covariates with Measurement Error |
|
|
112 | (1) |
|
|
112 | (8) |
|
5.4.1 Framingham Heart Study |
|
|
112 | (1) |
|
5.4.2 Single Covariate Measured with Error |
|
|
113 | (5) |
|
5.4.3 Multiple Covariates Measured with Error |
|
|
118 | (2) |
|
5.5 SIMEX in Some Important Special Cases |
|
|
120 | (3) |
|
5.5.1 Multiple Linear Regression |
|
|
120 | (2) |
|
5.5.2 Loglinear Mean Models |
|
|
122 | (1) |
|
5.5.3 Quadratic Mean Models |
|
|
122 | (1) |
|
5.6 Extensions and Related Methods |
|
|
123 | (5) |
|
5.6.1 Mixture of Berkson arid Classical Error |
|
|
123 | (2) |
|
5.6.2 Misclassification SIMEX |
|
|
125 | (1) |
|
5.6.3 Checking Structural Model Robustness via Remeasurement |
|
|
126 | (2) |
|
|
128 | (1) |
|
|
129 | (22) |
|
|
129 | (2) |
|
|
130 | (1) |
|
6.2 Instrumental Variables in Linear Models |
|
|
131 | (6) |
|
6.2.1 Instrumental Variables via Differentiation |
|
|
131 | (1) |
|
6.2.2 Simple Linear Regression with One Instrument |
|
|
132 | (2) |
|
6.2.3 Linear Regression with Multiple Instruments |
|
|
134 | (3) |
|
6.3 Approximate Instrumental Variable Estimation |
|
|
137 | (3) |
|
|
137 | (1) |
|
6.3.2 Mean and Variance Function Models |
|
|
138 | (1) |
|
6.3.3 First Regression Calibration IV Algorithm |
|
|
139 | (1) |
|
6.3.4 Second Regression Calibration IV Algorithm |
|
|
140 | (1) |
|
6.4 Adjusted Score Method |
|
|
140 | (3) |
|
|
143 | (2) |
|
|
143 | (2) |
|
|
145 | (1) |
|
|
145 | (3) |
|
6.6.1 Hybrid Classical and Regression Calibration |
|
|
145 | (2) |
|
6.6.2 Error Model Approaches |
|
|
147 | (1) |
|
|
148 | (3) |
|
|
151 | (30) |
|
|
151 | (1) |
|
7.2 Linear and Logistic Regression |
|
|
152 | (10) |
|
7.2.1 Linear Regression Corrected and Conditional Scores |
|
|
152 | (5) |
|
7.2.2 Logistic Regression Corrected and Conditional Scores |
|
|
157 | (2) |
|
7.2.3 Framingham Data Example |
|
|
159 | (3) |
|
7.3 Conditional Score Functions |
|
|
162 | (7) |
|
7.3.1 Conditional Score Basic. Theory |
|
|
162 | (2) |
|
7.3.2 Conditional Scores for Basic Models |
|
|
164 | (2) |
|
7.3.3 Conditional Scores for More Complicated Models |
|
|
166 | (3) |
|
7.4 Corrected Score Functions |
|
|
169 | (2) |
|
7.4.1 Corrected Score Basic Theory |
|
|
170 | (1) |
|
7.4.2 Monte Carlo Corrected Scores |
|
|
170 | (2) |
|
7.4.3 Some Exact Corrected Scores |
|
|
172 | (1) |
|
|
173 | (1) |
|
7.4.5 Corrected Scores with Replicate Measurements |
|
|
173 | |
|
7.5 Computation and Asymptotic Approximations |
|
|
171 | (6) |
|
7.5.1 Known Measurement Error Variance |
|
|
175 | (1) |
|
7.5.2 Estimated Measurement Error Variance |
|
|
176 | (1) |
|
7.6 Comparison of Conditional and Corrected Scores |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
178 | (3) |
|
8 LIKELIHOOD AND QUASILIKELIHOOD |
|
|
181 | (24) |
|
|
181 | (3) |
|
8.1.1 Step 1: The Likelihood If X Were Observable |
|
|
183 | (1) |
|
8.1.2 A General Concern: Identifiable Models |
|
|
184 | (1) |
|
8.2 Steps 2 and 3: Constructing Likelihoods |
|
|
184 | (6) |
|
|
185 | (1) |
|
8.2.2 Likelihood Construction for General Error Models |
|
|
186 | (2) |
|
|
188 | (1) |
|
|
189 | (1) |
|
8.3 Step 4: Numerical Computation of Likelihoods |
|
|
190 | (1) |
|
8.4 Cervical Cancer and Herpes |
|
|
190 | (2) |
|
|
192 | (1) |
|
8.6 Nevada Test Site Reanalysis |
|
|
193 | (4) |
|
8.6.1 Regression Calibration Implementation |
|
|
195 | (1) |
|
8.6.2 Maximum Likelihood Implementation |
|
|
196 | (1) |
|
|
197 | (4) |
|
8.7.1 Calculating the Likelihood |
|
|
198 | (1) |
|
8.7.2 Effects of Measurement Error on Threshold Models |
|
|
199 | (1) |
|
8.7.3 Simulation Study and Maximum Likelihood |
|
|
199 | (2) |
|
8.7.4 Berkson Analysis of the Data |
|
|
201 | (1) |
|
8.8 Quasilikelihood and Variance Function Models |
|
|
201 | (2) |
|
8.8.1 Details of Step 3 for QVF Models |
|
|
202 | (1) |
|
8.8.2 Details of Step 4 for QVF Models |
|
|
203 | (1) |
|
|
203 | (2) |
9 BAYESIAN METHODS |
|
205 | (38) |
|
|
205 | (4) |
|
9.1.1 Problem Formulation |
|
|
205 | (2) |
|
9.1.2 Posterior Inference |
|
|
207 | (1) |
|
9.1.3 Bayesian Functional and Structural Models |
|
|
208 | (1) |
|
9.1.4 Modularity of Bayesian MCMC |
|
|
209 | (1) |
|
|
209 | (2) |
|
9.3 Metropolis—Hastings Algorithm |
|
|
211 | (2) |
|
|
213 | (6) |
|
|
216 | (3) |
|
|
219 | (4) |
|
|
219 | (1) |
|
9.5.2 Polynomial Regression |
|
|
220 | (1) |
|
9.5.3 Multiplicative Error |
|
|
221 | (1) |
|
9.5.4 Segmented Regression |
|
|
222 | (1) |
|
|
223 | (2) |
|
|
225 | (5) |
|
9.7.1 Nonlinear Regression with Berkson Errors |
|
|
225 | (2) |
|
9.7.2 Logistic Regression with Berkson Errors |
|
|
227 | (1) |
|
|
228 | (2) |
|
9.8 Automatic Implementation |
|
|
230 | (5) |
|
9.8.1 Implementation and Simulations in WinBUGS |
|
|
231 | (3) |
|
9.8.2 More Complex Models |
|
|
234 | (1) |
|
9.9 Cervical Cancer and Herpes |
|
|
235 | (2) |
|
|
237 | (1) |
|
9.11 OPEN Data: A Variance Components Model |
|
|
238 | (2) |
|
|
240 | (3) |
10 HYPOTHESIS TESTING |
|
243 | (16) |
|
|
243 | (6) |
|
10.1.1 Simple Linear Regression, Normally Distributed X |
|
|
243 | (3) |
|
10.1.2 Analysis of Covariance |
|
|
246 | (2) |
|
10.1.3 General Considerations: What Is a Valid Test? |
|
|
248 | (1) |
|
10.1.4 Summary of Major Results |
|
|
248 | (1) |
|
10.2 The Regression Calibration Approximation |
|
|
249 | (2) |
|
10.2.1 Testing H0 : βx = 0 |
|
|
250 | (1) |
|
10.2.2 Testing H0 : βz = 0 |
|
|
250 | (1) |
|
10.2.3 Testing H0 : (βtx,βtz)t = 0 |
|
|
250 | (1) |
|
10.3 Illustration: OPEN Data |
|
|
251 | (1) |
|
10.4 Hypotheses about Subvectors of βx and βz |
|
|
251 | (2) |
|
10.4.1 Illustration: Framingham Data |
|
|
252 | (1) |
|
10.5 Efficient Score Tests of Ho : βx = 0 |
|
|
253 | (4) |
|
10.5.1 Generalized Score Tests |
|
|
254 | (3) |
|
|
257 | (2) |
11 LONGITUDINAL DATA AND MIXED MODELS |
|
259 | (20) |
|
11.1 Mixed Models for Longitudinal Data |
|
|
259 | (3) |
|
11.1.1 Simple Linear Mixed Models |
|
|
259 | (1) |
|
11.1.2 The General Linear Mixed Model |
|
|
260 | (1) |
|
11.1.3 The Linear Logistic Mixed Model |
|
|
261 | (1) |
|
11.1.4 The Generalized Linear Mixed Model |
|
|
261 | (1) |
|
11.2 Mixed Measurement Error Models |
|
|
262 | (3) |
|
11.2.1 The Variance Components Model Revisited |
|
|
262 | (1) |
|
11.2.2 General Considerations |
|
|
263 | (1) |
|
11.2.3 Some Simple Examples |
|
|
263 | (2) |
|
11.2.4 Models for Within-Subject X-Correlation |
|
|
265 | (1) |
|
11.3 A Bias-Corrected Estimator |
|
|
265 | (2) |
|
|
267 | (1) |
|
11.5 Regression Calibration for GLMMs |
|
|
267 | (1) |
|
11.6 Maximum Likelihood Estimation |
|
|
268 | (1) |
|
|
268 | (1) |
|
11.8 Other Models and Applications |
|
|
269 | (3) |
|
11.8.1 Models with Random Effects Multiplied by X |
|
|
269 | (1) |
|
11.8.2 Models with Random Effects Depending Nonlinearly on X |
|
|
270 | (1) |
|
11.8.3 Inducing a True-Data Model from a Standard Observed Data Model |
|
|
270 | (1) |
|
11.8.4 Autoregressive Models in Longitudinal Data |
|
|
271 | (1) |
|
11.9 Example: The CHOICE Study |
|
|
272 | (4) |
|
|
273 | (1) |
|
11.9.2 Naive Replication and Sensitivity |
|
|
273 | (1) |
|
11.9.3 Accounting for Biological Variability |
|
|
274 | (2) |
|
|
276 | (3) |
12 NONPARAMETRIC ESTIMATION |
|
279 | (24) |
|
|
279 | (14) |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
280 | (1) |
|
12.1.4 Properties of Deconvolution Methods |
|
|
281 | (1) |
|
12.1.5 Is It Possible to Estimate the Bandwidth? |
|
|
282 | (2) |
|
12.1.6 Parametric Deconvolution |
|
|
284 | (3) |
|
12.1.7 Estimating Distribution Functions |
|
|
287 | (1) |
|
12.1.8 Optimal Score Tests |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
290 | (1) |
|
12.1.11 Bayesian Density Estimation by Normal Mixtures |
|
|
291 | (2) |
|
12.2 Nonparametric Regression |
|
|
293 | (6) |
|
12.2.1 Local-Polynomial, Kernel-Weighted Regression |
|
|
293 | (1) |
|
|
294 | (1) |
|
12.2.3 QVF and Likelihood Models |
|
|
295 | (1) |
|
12.2.4 SIMEX for Nonparametric Regression |
|
|
296 | (1) |
|
12.2.5 Regression Calibration |
|
|
297 | (1) |
|
12.2.6 Structural Splines |
|
|
297 | (1) |
|
12.2.7 Taylex and Other Methods |
|
|
298 | (1) |
|
12.3 Baseline Change Example |
|
|
299 | (3) |
|
12.3.1 Discussion of the Baseline Change Controls Data |
|
|
301 | (1) |
|
|
302 | (1) |
13 SEMIPARAMETRIC REGRESSION |
|
303 | (16) |
|
|
303 | (1) |
|
|
303 | (1) |
|
13.3 MCMC for Additive Spline Models |
|
|
304 | (1) |
|
13.4 Monte Carlo EM-Algorithm |
|
|
305 | (4) |
|
|
306 | (1) |
|
13.4.2 Metropolis Hastings Fact |
|
|
306 | (1) |
|
|
306 | (3) |
|
13.5 Simulation with Classical Errors |
|
|
309 | (2) |
|
13.6 Simulation with Berkson Errors |
|
|
311 | (1) |
|
13.7 Semiparametrics: X Modeled Parametrically |
|
|
312 | (2) |
|
13.8 Parametric Models: No Assumptions on X |
|
|
314 | (4) |
|
13.8.1 Deconvolution Methods |
|
|
314 | (1) |
|
13.8.2 Models Linear in Functions of X |
|
|
315 | (1) |
|
13.8.3 Linear Logistic Regression with Replicates |
|
|
316 | (1) |
|
13.8.4 Doubly Robust Parametric Modeling |
|
|
317 | (1) |
|
|
318 | (1) |
14 SURVIVAL DATA |
|
319 | (20) |
|
14.1 Notation and Assumptions |
|
|
319 | (1) |
|
14.2 Induced Hazard Function |
|
|
320 | (1) |
|
14.3 Regression Calibration for Survival Analysis |
|
|
321 | (2) |
|
14.3.1 Methodology and Asymptotic Properties |
|
|
321 | (1) |
|
14.3.2 Risk Set Calibration |
|
|
322 | (1) |
|
14.4 SIMEX for Survival Analysis |
|
|
323 | (1) |
|
14.5 Chronic Kidney Disease Progression |
|
|
324 | (5) |
|
14.5.1 Regression Calibration: for CKD Progression |
|
|
325 | (1) |
|
14.5.2 SIMEX for CND Progression |
|
|
326 | (3) |
|
14.6 Semi and Nonparametric Methods |
|
|
329 | (1) |
|
14.6.1 Nonparametric Estimation with Validation Data |
|
|
330 | (2) |
|
14.6.2 Nonparametric Estimation with Replicated Data |
|
|
332 | (1) |
|
14.6.3 Likelihood Estimation |
|
|
333 | |
|
14.7 Likelihood Inference for Frailty Models |
|
|
330 | (7) |
|
|
337 | (2) |
15 RESPONSE VARIABLE ERROR |
|
339 | (20) |
|
15.1 Response Error and Linear Regression |
|
|
339 | (4) |
|
15.2 Other Forms of Additive Response terror |
|
|
343 | (2) |
|
|
343 | (1) |
|
15.2.2 Response Error in Heteroscedastic Regression |
|
|
344 | (1) |
|
15.3 Logistic Regression with Response Error |
|
|
345 | (8) |
|
15.3.1 The Impact of Response Misclassification |
|
|
345 | (2) |
|
15.3.2 Correcting for Response Misclassification |
|
|
347 | (6) |
|
|
353 | (2) |
|
15.4.1 General Likelihood Theory and Surrogates |
|
|
353 | (1) |
|
|
354 | (1) |
|
15.5 Use of Complete Data Only |
|
|
355 | (1) |
|
15.5.1 Likelihood of the Validation Data |
|
|
355 | (1) |
|
|
356 | (1) |
|
15.6 Semiparametric Methods for Validation Data |
|
|
356 | (2) |
|
15.6.1 Simple Random Sampling |
|
|
356 | (1) |
|
15.6.2 Other Types of Sampling |
|
|
357 | (1) |
|
|
358 | (1) |
A BACKGROUND MATERIAL |
|
359 | (26) |
|
|
359 | (1) |
|
A.2 Normal and Lognormal Distributions |
|
|
359 | (1) |
|
A.3 Gamma and Inverse-Gamma Distributions |
|
|
360 | (1) |
|
A.4 Best and Best Linear Prediction and Regression |
|
|
361 | (3) |
|
|
361 | (2) |
|
A.4.2 Best Linear Prediction without an Intercept |
|
|
363 | (1) |
|
A.4.3 Nonlinear Prediction |
|
|
363 | (1) |
|
|
364 | (3) |
|
|
364 | (1) |
|
A.5.2 Maximum Likelihood Estimation |
|
|
364 | (1) |
|
A.5.3 Likelihood Ratio Tests |
|
|
365 | (1) |
|
A.5.4 Profile Likelihood and Likelihood Ratio Confidence Intervals |
|
|
365 | (1) |
|
A.5.5 Efficient Score Tests |
|
|
366 | (1) |
|
A.6 Unbiased Estimating Equations |
|
|
367 | (7) |
|
A.6.1 Introduction and Basic Large Sample Theory |
|
|
367 | (2) |
|
A.6.2 Sandwich Formula Example: Linear Regression without Measurement Error |
|
|
369 | (1) |
|
A.6.3 Sandwich Method and Likelihood-Type Inference |
|
|
370 | (2) |
|
A.6.4 Unbiased, but Conditionally Biased, Estimating Equations |
|
|
372 | (1) |
|
A.6.5 Biased Estimating Equations |
|
|
372 | (1) |
|
A.6.6 Stacking Estimating Equations: Using Prior Estimates of Some Parameters |
|
|
372 | (2) |
|
A.7 Quasilikelihood and Variance Function Models (QVF) |
|
|
374 | (3) |
|
|
374 | (1) |
|
A.7.2 Estimation and Inference for QVF Models |
|
|
375 | (2) |
|
A.8 Generalized Linear Models |
|
|
377 | (1) |
|
|
377 | (8) |
|
|
377 | (1) |
|
A.9.2 Nonlinear Regression without Measurement Error |
|
|
378 | (2) |
|
A.9.3 Bootstrapping Heteroscedastic Regression Models |
|
|
380 | (1) |
|
A.9.4 Bootstrapping Logistic Regression Models |
|
|
380 | (1) |
|
A.9.5 Bootstrapping Measurement Error Models |
|
|
381 | (1) |
|
A.9.6 Bootstrap Confidence Intervals |
|
|
382 | (3) |
B TECHNICAL DETAILS |
|
385 | (28) |
|
B.1 Appendix to Chapter 1: Power in Berkson and Classical Error Models |
|
|
385 | (1) |
|
B.2 Appendix to Chapter 3: Linear Regression and Attenuation |
|
|
386 | (1) |
|
B.3 Appendix to Chapter 4: Regression Calibration |
|
|
387 | (5) |
|
B.3.1 Standard Errors and Replication |
|
|
387 | (4) |
|
B.3.2 Quadratic Regression: Details of the Expanded Calibration Model |
|
|
391 | (1) |
|
B.3.3 Heuristics and Accuracy of the Approximations |
|
|
391 | (1) |
|
B.4 Appendix to Chapter 5: SIMEX |
|
|
392 | (7) |
|
B.4.1 Simulation Extrapolation Variance Estimation |
|
|
393 | (2) |
|
B.4.2 Estimating Equation Approach to Variance Estimation |
|
|
395 | (4) |
|
B.5 Appendix to Chapter 6: Instrumental Variables |
|
|
399 | (7) |
|
B.5.1 Derivation of the Estimators |
|
|
399 | (2) |
|
B.5.2 Asymptotic Distribution Approximations |
|
|
401 | (5) |
|
B.6 Appendix to Chapter 7: Score Function Methods |
|
|
406 | (1) |
|
B.6.1 Technical Complements to Conditional Score Theory |
|
|
406 | (1) |
|
B.6.2 Technical Complements to Distribution Theory for Estimated Σuu |
|
|
406 | (1) |
|
B.7 Appendix to Chapter 8: Likelihood and Quasilikelihood |
|
|
407 | (2) |
|
B.7.1 Monte Carlo Computation of Integrals |
|
|
407 | (1) |
|
B.7.2 Linear, Probit, and Logistic Regression |
|
|
408 | (1) |
|
B.8 Appendix to Chapter 9: Bayesian Methods |
|
|
409 | (4) |
|
B.8.1 Code for Section 9.8.1 |
|
|
409 | (1) |
|
B.8.2 Code for Section 9.11 |
|
|
410 | (3) |
References |
|
413 | (26) |
Applications and Examples Index |
|
439 | (2) |
Author Index |
|
441 | (6) |
Subject Index |
|
447 | |