Preface to revised edition |
|
xv | |
Preface |
|
xvii | |
Acknowledgements |
|
xxi | |
|
|
1 | (212) |
|
Single-Period Option Pricing |
|
|
3 | (16) |
|
Option pricing in a nutshell |
|
|
3 | (1) |
|
|
4 | (1) |
|
General one-period economy |
|
|
5 | (10) |
|
|
6 | (1) |
|
Conditions for no arbitrage: existence of Z |
|
|
7 | (2) |
|
Completeness: uniqueness of Z |
|
|
9 | (3) |
|
Probabilistic formulation |
|
|
12 | (3) |
|
|
15 | (1) |
|
|
15 | (4) |
|
|
19 | (12) |
|
|
19 | (1) |
|
|
20 | (1) |
|
Basic properties of Brownian motion |
|
|
21 | (5) |
|
|
21 | (2) |
|
Deterministic transformations of Brownian motion |
|
|
23 | (1) |
|
Some basic sample path properties |
|
|
24 | (2) |
|
|
26 | (5) |
|
|
28 | (3) |
|
|
31 | (32) |
|
Definition and basic properties |
|
|
32 | (3) |
|
|
35 | (6) |
|
Martingales bounded in L1 |
|
|
35 | (1) |
|
Uniformly integrable martingales |
|
|
36 | (3) |
|
Square-integrable martingales |
|
|
39 | (2) |
|
Stopping times and the optional sampling theorem |
|
|
41 | (8) |
|
|
41 | (4) |
|
Optional sampling theorem |
|
|
45 | (4) |
|
Variation, quadratic variation and integration |
|
|
49 | (7) |
|
Total variation and Stieltjes integration |
|
|
49 | (2) |
|
|
51 | (4) |
|
|
55 | (1) |
|
Local martingales and semimartingales |
|
|
56 | (5) |
|
|
56 | (3) |
|
|
59 | (2) |
|
Supermartingales and the Doob--Meyer decomposition |
|
|
61 | (2) |
|
|
63 | (28) |
|
|
63 | (2) |
|
|
65 | (2) |
|
Stochastic integrals: the L2 theory |
|
|
67 | (7) |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
70 | (2) |
|
Modes of convergence to H • M |
|
|
72 | (2) |
|
Properties of the stochastic integral |
|
|
74 | (3) |
|
Extensions via localization |
|
|
77 | (4) |
|
Continuous local martingales as integrators |
|
|
77 | (1) |
|
Semimartingales as integrators |
|
|
78 | (2) |
|
|
80 | (1) |
|
Stochastic calculus: Ito's formula |
|
|
81 | (10) |
|
Integration by parts and Ito's formula |
|
|
81 | (2) |
|
|
83 | (2) |
|
Multidimensional version of Ito's formula |
|
|
85 | (3) |
|
|
88 | (3) |
|
Girsanov and Martingale Representation |
|
|
91 | (24) |
|
Equivalent probability measures and the Randon--Nikodym derivative |
|
|
91 | (8) |
|
Basic results and properties |
|
|
91 | (4) |
|
Equivalent and locally equivalent measures on a filtered space |
|
|
95 | (2) |
|
|
97 | (2) |
|
|
99 | (6) |
|
Girsanov's theorem for continuous semimartingales |
|
|
99 | (2) |
|
Girsanov's theorem for Brownian motion |
|
|
101 | (4) |
|
Martingale representation theorem |
|
|
105 | (10) |
|
The space I2(M) and its orthogonal complement |
|
|
106 | (4) |
|
Martingale measures and the martingale representation theorem |
|
|
110 | (1) |
|
Extensions and the Brownian case |
|
|
111 | (4) |
|
Stochastic Differential Equations |
|
|
115 | (26) |
|
|
115 | (1) |
|
Formal definition of an SDE |
|
|
116 | (1) |
|
An aside on the canonical set-up |
|
|
117 | (2) |
|
Weak and strong solutions |
|
|
119 | (6) |
|
|
119 | (2) |
|
|
121 | (3) |
|
Tying together strong and weak |
|
|
124 | (1) |
|
Establishing existence and uniqueness: Ito theory |
|
|
125 | (9) |
|
Picard--Lindelof iteration and ODEs |
|
|
126 | (1) |
|
|
127 | (3) |
|
Existence and uniqueness for Lipschitz coefficients |
|
|
130 | (4) |
|
|
134 | (5) |
|
Martingale representation revisited |
|
|
139 | (2) |
|
Option Pricing in Continuous Time |
|
|
141 | (42) |
|
Asset price processes and trading strategies |
|
|
142 | (4) |
|
|
142 | (2) |
|
Self-financing trading strategies |
|
|
144 | (2) |
|
|
146 | (5) |
|
Option value as a solution to a PDE |
|
|
147 | (2) |
|
Option pricing via an equivalent martingale measure |
|
|
149 | (2) |
|
|
151 | (25) |
|
Information within the economy |
|
|
152 | (1) |
|
Units, numeraires and martingale measures |
|
|
153 | (5) |
|
Arbitrage and admissible strategies |
|
|
158 | (5) |
|
Derivative pricing in an arbitrage-free economy |
|
|
163 | (1) |
|
|
164 | (9) |
|
|
173 | (3) |
|
|
176 | (7) |
|
|
176 | (2) |
|
Controlled derivative payouts |
|
|
178 | (1) |
|
More general asset price processes |
|
|
179 | (1) |
|
|
180 | (3) |
|
Dynamic Term Structure Models |
|
|
183 | (30) |
|
|
183 | (1) |
|
An economy of pure discount bonds |
|
|
183 | (4) |
|
Modelling the term structure |
|
|
187 | (26) |
|
Pure discount bond models |
|
|
191 | (1) |
|
|
191 | (1) |
|
|
192 | (2) |
|
Finite variation kernel models |
|
|
194 | (3) |
|
Absolutely continuous (FVK) models |
|
|
197 | (1) |
|
|
197 | (3) |
|
Heath--Jarrow--Morton models |
|
|
200 | (6) |
|
Flesaker--Hughston models |
|
|
206 | (7) |
|
|
213 | (46) |
|
|
215 | (12) |
|
|
215 | (1) |
|
The real world is not a martingale measure |
|
|
215 | (3) |
|
Modelling via infinitesimals |
|
|
216 | (1) |
|
Modelling via macro information |
|
|
217 | (1) |
|
|
218 | (5) |
|
A warning on dimension reduction |
|
|
219 | (2) |
|
|
221 | (2) |
|
Local versus global calibration |
|
|
223 | (4) |
|
Basic Instruments and Terminology |
|
|
227 | (10) |
|
|
227 | (1) |
|
|
227 | (2) |
|
Accrual factors and Libor |
|
|
228 | (1) |
|
|
229 | (1) |
|
|
230 | (2) |
|
|
232 | (1) |
|
Discount factors and valuation |
|
|
233 | (4) |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
234 | (3) |
|
Pricing Standard Market Derivatives |
|
|
237 | (10) |
|
|
237 | (1) |
|
Forward rate agreements and swaps |
|
|
237 | (1) |
|
|
238 | (4) |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
242 | (2) |
|
|
244 | (3) |
|
|
244 | (1) |
|
|
245 | (2) |
|
|
247 | (12) |
|
|
247 | (1) |
|
Futures contract definition |
|
|
247 | (5) |
|
|
248 | (1) |
|
Market risk without credit risk |
|
|
249 | (2) |
|
|
251 | (1) |
|
Characterizing the futures price process |
|
|
252 | (3) |
|
|
252 | (1) |
|
|
253 | (2) |
|
Recovering the futures price process |
|
|
255 | (1) |
|
Relationship between forwards and futures |
|
|
256 | (3) |
|
Orientation: Pricing Exotic European Derivatives |
|
|
259 | (56) |
|
Terminal Swap-Rate Models |
|
|
263 | (14) |
|
|
263 | (1) |
|
|
263 | (3) |
|
|
263 | (2) |
|
Terminal swap-rate models |
|
|
265 | (1) |
|
Example terminal swap-rate models |
|
|
266 | (3) |
|
The exponential swap-rate model |
|
|
266 | (1) |
|
The geometric swap-rate model |
|
|
267 | (1) |
|
The linear swap-rate model |
|
|
268 | (1) |
|
Arbitrage-free property of terminal swap-rate models |
|
|
269 | (4) |
|
Existence of calibrating parameters |
|
|
270 | (1) |
|
Extension of model to [0, ∞) |
|
|
271 | (2) |
|
Arbitrage and the linear swap-rate model |
|
|
273 | (1) |
|
|
273 | (4) |
|
|
277 | (10) |
|
|
277 | (1) |
|
Valuation of `convexity-related' products |
|
|
278 | (4) |
|
Affine decomposition of convexity products |
|
|
278 | (2) |
|
Convexity corrections using the linear swap-rate model |
|
|
280 | (2) |
|
|
282 | (5) |
|
|
283 | (1) |
|
Options on constant maturity swaps |
|
|
284 | (1) |
|
|
285 | (2) |
|
Implied Interest Rate Pricing Models |
|
|
287 | (16) |
|
|
287 | (1) |
|
Implying the functional form DTS |
|
|
288 | (4) |
|
|
292 | (1) |
|
|
293 | (6) |
|
Numerical comparison of exponential and implied swap-rate models |
|
|
299 | (4) |
|
Multi-Currency Terminal Swap-Rate Models |
|
|
303 | (12) |
|
|
303 | (1) |
|
|
304 | (4) |
|
|
305 | (2) |
|
General case: volatility smiles |
|
|
307 | (1) |
|
|
308 | (7) |
|
|
308 | (3) |
|
|
311 | (4) |
|
Orientation: Pricing Exotic American and Path-Dependent Derivatives |
|
|
315 | (102) |
|
|
319 | (18) |
|
|
319 | (1) |
|
Well-known short-rate models |
|
|
320 | (5) |
|
Vasicek--Hull--White model |
|
|
320 | (2) |
|
Log-normal short-rate models |
|
|
322 | (1) |
|
Cox--Ingersoll--Ross model |
|
|
323 | (1) |
|
Multidimensional short-rate models |
|
|
324 | (1) |
|
Parameter fitting within the Vasicek--Hull--White model |
|
|
325 | (4) |
|
Derivation of φ, Ψ and B.T |
|
|
326 | (1) |
|
|
327 | (1) |
|
Derivation of μ, λ and A.T |
|
|
328 | (1) |
|
Bermudan swaptions via Vasicek--Hull--White |
|
|
329 | (8) |
|
|
330 | (1) |
|
|
330 | (2) |
|
Valuation through the tree |
|
|
332 | (1) |
|
Evaluation of expected future value |
|
|
332 | (2) |
|
|
334 | (3) |
|
|
337 | (14) |
|
|
337 | (1) |
|
|
338 | (5) |
|
|
339 | (2) |
|
Existence of a consistent arbitrage-free term structure model |
|
|
341 | (2) |
|
|
343 | (1) |
|
Regular swap-market models |
|
|
343 | (4) |
|
|
344 | (2) |
|
Existence of a consistent arbitrage-free term structure model |
|
|
346 | (1) |
|
|
346 | (1) |
|
Reverse swap-market models |
|
|
347 | (4) |
|
|
348 | (1) |
|
Existence of a consistent arbitrage-free term structure model |
|
|
349 | (1) |
|
|
350 | (1) |
|
Markov-Functional Modelling |
|
|
351 | (22) |
|
|
351 | (1) |
|
|
351 | (3) |
|
Fitting a one-dimensional Markov-functional model to swaption prices |
|
|
354 | (5) |
|
Deriving the numeraire on a grid |
|
|
355 | (3) |
|
Existence of a consistent arbitrage-free term structure model |
|
|
358 | (1) |
|
|
359 | (4) |
|
|
359 | (2) |
|
|
361 | (2) |
|
Multidimensional Markov-functional models |
|
|
363 | (2) |
|
Log-normally driven Markov-functional models |
|
|
364 | (1) |
|
Relationship to market models |
|
|
365 | (2) |
|
Mean reversion, forward volatilities and correlation |
|
|
367 | (3) |
|
Mean reversion and correlation |
|
|
367 | (1) |
|
Mean reversion and forward volatilities |
|
|
368 | (1) |
|
Mean reversion within the Markov-functional Libor model |
|
|
369 | (1) |
|
|
370 | (3) |
|
|
373 | (44) |
Appendix 1 The Usual Conditions |
|
417 | (2) |
Appendix 2 L2 Spaces |
|
419 | (2) |
Appendix 3 Gaussian Calculations |
|
421 | (2) |
References |
|
423 | (4) |
Index |
|
427 | |