Preface |
|
xi | (2) |
Acknowledgments |
|
xiii | |
Part 1 Basic Properties of Silicon |
|
3 | (78) |
|
Chapter 1. Semiconductor Materials |
|
|
3 | (18) |
|
1.1. Chemical and Physical Bonds |
|
|
3 | (1) |
|
|
4 | (10) |
|
1.3. Energy Bands in Metals and Semiconductors |
|
|
14 | (5) |
|
|
19 | (1) |
|
|
19 | (2) |
|
Chapter 2. Semiconductors and Charge Carriers |
|
|
21 | (24) |
|
2.1. Optical Properties of Semiconductors |
|
|
21 | (5) |
|
2.2. Thermal Excitation of Valence Electrons |
|
|
26 | (1) |
|
2.3. Fermi-Dirac Distribution |
|
|
27 | (5) |
|
2.4. Charge Concentrations in Intrinsic Semiconductors |
|
|
32 | (2) |
|
|
34 | (1) |
|
2.6. Doped Semiconductors |
|
|
35 | (5) |
|
2.7. A Simplified Introduction to the Generation-Recombination Processes |
|
|
40 | (3) |
|
|
43 | (1) |
|
|
44 | (1) |
|
Chapter 3. Carrier Motion in Semiconductors |
|
|
45 | (36) |
|
|
45 | (1) |
|
3.2. Carrier Motion by Drift |
|
|
46 | (8) |
|
3.3. Carrier Motion by Diffusion |
|
|
54 | (4) |
|
|
58 | (2) |
|
3.5. Boltzman Transport Equation |
|
|
60 | (3) |
|
3.6. Recombination-Generation Processes in Semiconductors |
|
|
63 | (8) |
|
|
71 | (4) |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
78 | (2) |
Part 2 Basic Properties of Biological Molecules |
|
81 | (54) |
|
Chapter 4. Biological Materials |
|
|
81 | (28) |
|
4.1. Physical Bonds Revisited |
|
|
81 | (3) |
|
4.2. Water and Electrolyte Solutions |
|
|
84 | (5) |
|
4.3. Optical Properties of Molecules in Solution |
|
|
89 | (3) |
|
4.4. Biological Molecules--Proteins |
|
|
92 | (4) |
|
|
96 | (3) |
|
4.6. Phospholipids Organization |
|
|
99 | (1) |
|
|
99 | (6) |
|
4.8. An Overview of the Eucaryotic Cell |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
107 | (2) |
|
Chapter 5. Motion in Solution and Chemical Reactions |
|
|
109 | (26) |
|
5.1. Diffusion in Solution |
|
|
109 | (5) |
|
|
114 | (3) |
|
|
117 | (4) |
|
|
121 | (9) |
|
|
130 | (1) |
|
|
130 | (5) |
Part 3 Junctions and Membranes |
|
135 | (76) |
|
Chapter 6. Semiconductor Junctions |
|
|
135 | (42) |
|
|
135 | (1) |
|
6.2. pn Junction in Equilibrium |
|
|
136 | (12) |
|
6.3. pn Junction in Nonequilibrium: Effect of the Bias Voltage |
|
|
148 | (1) |
|
6.4. Current-Voltage Characteristics of the pn Junction |
|
|
149 | (8) |
|
6.5. Charge Storage in the pn Junction |
|
|
157 | (3) |
|
6.6. Transient Behavior of the pn Junction |
|
|
160 | (1) |
|
6.7. Considerations on the Ideal pn Junction |
|
|
160 | (1) |
|
6.8. Reverse Bias: Deviations from the Ideal Diode Behavior |
|
|
161 | (2) |
|
6.9. Forward Bias: Deviations from the Ideal Diode Behavior |
|
|
163 | (4) |
|
6.10. pn Junction (Diode) Models |
|
|
167 | (2) |
|
|
169 | (5) |
|
|
174 | (1) |
|
|
175 | (2) |
|
Chapter 7. Solid-Electrolyte Junctions and Membrane Transport |
|
|
177 | (34) |
|
7.1. Electrode-Electrolyte Interfaces |
|
|
177 | (10) |
|
7.2. Solution of the Poisson-Boltzmann Equation under Various Boundary Conditions |
|
|
187 | (6) |
|
|
193 | (14) |
|
|
207 | (1) |
|
|
207 | (4) |
Part 4 Devices and CAD |
|
211 | (188) |
|
Chapter 8. Metal-Oxide-Semiconductor (MOS) Structure |
|
|
211 | (26) |
|
|
211 | (1) |
|
8.2. Accumulation Operating Mode |
|
|
212 | (2) |
|
8.3. Depletion Operating Mode |
|
|
214 | (6) |
|
8.4. Inversion Operating Mode |
|
|
220 | (5) |
|
8.5. C-V Plots of an MOS Structure |
|
|
225 | (6) |
|
8.6. Ion Implantation for Threshold Voltage Control |
|
|
231 | (1) |
|
8.7. General Analysis of the MOS Structure |
|
|
232 | (3) |
|
|
235 | (1) |
|
|
235 | (2) |
|
Chapter 9. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) |
|
|
237 | (44) |
|
9.1. Enhancement-Mode MOSFET |
|
|
237 | (9) |
|
9.2. Depletion-Mode MOSFET |
|
|
246 | (5) |
|
|
251 | (5) |
|
9.4. Biasing Circuits for the MOSFET |
|
|
256 | (4) |
|
9.5. Small-Signal Models for the MOSFET |
|
|
260 | (6) |
|
9.6. MOSFET-Based Operational Amplifier |
|
|
266 | (1) |
|
9.7. Subthreshold Operation of the MOSFET |
|
|
267 | (7) |
|
9.8. Contribution of Organic Chemistry to the Development of Electronic Devices |
|
|
274 | (2) |
|
|
276 | (4) |
|
|
280 | (1) |
|
Chapter 10. MOSFET-Based Biolectronic Devices: Biosensors |
|
|
281 | (34) |
|
|
281 | (6) |
|
10.2. Ion-Sensitive Field-Effect Transistor (ISFET) |
|
|
287 | (7) |
|
10.3. Enzyme Field-Effect Transistor (ENFET) |
|
|
294 | (8) |
|
10.4. Cell-Based Biosensors and Sensors of Cell Metabolism |
|
|
302 | (2) |
|
10.5. Light-Addressable Potentiometric Sensor (LAPS) |
|
|
304 | (3) |
|
10.6. Contributions of Microfabrication Technologies to the Field of Biosensors |
|
|
307 | (3) |
|
|
310 | (1) |
|
|
311 | (4) |
|
Chapter 11. Neurons and Neuronal Networks |
|
|
315 | (36) |
|
11.1. Short Overview of the Biology of the Neuron |
|
|
315 | (2) |
|
11.2. Biophysical Description of the Action Potential |
|
|
317 | (9) |
|
11.3. The Neuron as a Threshold Device |
|
|
326 | (2) |
|
|
328 | (8) |
|
|
336 | (2) |
|
11.6. Neurobioengineering Neuroelectronic Junctions |
|
|
338 | (8) |
|
|
346 | (2) |
|
|
348 | (1) |
|
|
348 | (3) |
|
Chapter 12. Models of Bioelectronic Devices and Computer Simulations |
|
|
351 | (48) |
|
|
351 | (1) |
|
12.2. MOSFET Models in SPICE |
|
|
352 | (4) |
|
12.3. Use of SPICE for Modeling Silicon-Based Chemical Sensors |
|
|
356 | (24) |
|
12.4. Use of SPICE for Modeling Neurons (Excitable Membrane) |
|
|
380 | (10) |
|
12.5. Use of SPICE for Modeling Silicon Neurons |
|
|
390 | (7) |
|
|
397 | (2) |
Appendix A. Physical Constants and Material Properties |
|
399 | (2) |
A.1. Physical constants |
|
399 | (1) |
A.2. Properties of Si, GaAs, SiO(2), Si(3)N(4), Al(2)O(3), (at 300 K) |
|
400 | (1) |
Appendix B. Mathematical Operators |
|
401 | (4) |
B.1. Vector Differential Operator (XXX) |
|
401 | (1) |
B.2. Laplacian Operator (XXX(2)) |
|
402 | (1) |
B.3. Gradient |
|
402 | (1) |
B.4. Divergence of a Vector Field |
|
402 | (1) |
B.5. Curl of a Vector Field |
|
403 | (1) |
B.6. Basic Relations for the Mathematical Operators |
|
403 | (2) |
Index |
|
405 | |