|
|
1 | (54) |
|
|
2 | (7) |
|
|
9 | (8) |
|
|
17 | (6) |
|
|
23 | (6) |
|
|
29 | (8) |
|
Powers, Polynomials, and Rational Functions |
|
|
37 | (8) |
|
Introduction to Continuity |
|
|
45 | (10) |
|
|
48 | (4) |
|
|
52 | (2) |
|
|
54 | (1) |
|
Key Concept: The Derivative |
|
|
55 | (50) |
|
|
56 | (6) |
|
|
62 | (8) |
|
The Derivative at a Point |
|
|
70 | (8) |
|
|
78 | (7) |
|
Interpretations of the Derivative |
|
|
85 | (4) |
|
|
89 | (6) |
|
Continuity and Differentiability |
|
|
95 | (10) |
|
|
99 | (4) |
|
|
103 | (1) |
|
|
104 | (1) |
|
Short-Cuts to Differentiation |
|
|
105 | (60) |
|
|
106 | (7) |
|
|
113 | (5) |
|
The Product and Quotient Rules |
|
|
118 | (5) |
|
|
123 | (5) |
|
The Trigonometric Functions |
|
|
128 | (5) |
|
Applications of the Chain Rule |
|
|
133 | (5) |
|
|
138 | (3) |
|
|
141 | (9) |
|
Linear Approximation and the Derivative |
|
|
150 | (4) |
|
Using Local Linearity to Find Limits |
|
|
154 | (11) |
|
|
159 | (3) |
|
|
162 | (1) |
|
|
163 | (2) |
|
|
165 | (56) |
|
Using First and Second Derivatives |
|
|
166 | (10) |
|
|
176 | (4) |
|
|
180 | (9) |
|
Applications to Marginality |
|
|
189 | (7) |
|
Optimization and Modeling |
|
|
196 | (7) |
|
|
203 | (4) |
|
Theorems About Continuous and Differentiable Functions |
|
|
207 | (14) |
|
|
212 | (4) |
|
|
216 | (1) |
|
|
217 | (4) |
|
Key Concept: The Definite Integral |
|
|
221 | (40) |
|
How Do We Measure Distance Traveled? |
|
|
222 | (7) |
|
|
229 | (7) |
|
Interpretations of the Definite Integral |
|
|
236 | (8) |
|
Theorems About Definite Integrals |
|
|
244 | (17) |
|
|
252 | (5) |
|
|
257 | (1) |
|
|
258 | (3) |
|
Constructing Antiderivatives |
|
|
261 | (28) |
|
Antiderivatives Graphically and Numerically |
|
|
262 | (6) |
|
Constructing Antiderivatives Analytically |
|
|
268 | (5) |
|
|
273 | (5) |
|
Second Fundamental Theorem of Calculus |
|
|
278 | (4) |
|
|
282 | (7) |
|
|
284 | (3) |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
289 | (56) |
|
Integration by Substitution |
|
|
290 | (8) |
|
|
298 | (6) |
|
|
304 | (5) |
|
Algebraic Identities and Trigonometric Substitutions |
|
|
309 | (8) |
|
Approximating Definite Integrals |
|
|
317 | (5) |
|
Approximation Errors and Simpson's Rule |
|
|
322 | (4) |
|
|
326 | (8) |
|
Comparison of Improper Integrals |
|
|
334 | (11) |
|
|
338 | (4) |
|
|
342 | (1) |
|
|
343 | (2) |
|
Using the Definite Integral |
|
|
345 | (60) |
|
|
346 | (6) |
|
|
352 | (8) |
|
Density and Center of Mass |
|
|
360 | (8) |
|
|
368 | (9) |
|
Applications to Economics |
|
|
377 | (6) |
|
|
383 | (7) |
|
Probability, Mean, and Median |
|
|
390 | (15) |
|
|
397 | (4) |
|
|
401 | (1) |
|
|
402 | (3) |
|
|
405 | (28) |
|
|
406 | (6) |
|
Convergence of Sequences and Series |
|
|
412 | (5) |
|
|
417 | (6) |
|
|
423 | (10) |
|
|
429 | (2) |
|
|
431 | (1) |
|
|
431 | (2) |
|
|
433 | (44) |
|
|
434 | (7) |
|
|
441 | (5) |
|
Finding and Using Taylor Series |
|
|
446 | (7) |
|
The Error in Taylor Polynomial Approximations |
|
|
453 | (4) |
|
|
457 | (20) |
|
|
470 | (3) |
|
|
473 | (1) |
|
|
474 | (3) |
|
|
477 | (82) |
|
What is a Differential Equation? |
|
|
478 | (4) |
|
|
482 | (6) |
|
|
488 | (4) |
|
|
492 | (5) |
|
|
497 | (9) |
|
Applications and Modeling |
|
|
506 | (8) |
|
Models of Population Growth |
|
|
514 | (9) |
|
Systems of Differential Equations |
|
|
523 | (9) |
|
Analyzing the Phase Plane |
|
|
532 | (5) |
|
Second-Order Differential Equations: Oscillations |
|
|
537 | (7) |
|
Linear Second-Order Differential Equations |
|
|
544 | (15) |
|
|
552 | (3) |
|
|
555 | (1) |
|
|
556 | (3) |
|
Functions of Several Variables |
|
|
559 | (46) |
|
Functions of Two Variables |
|
|
560 | (7) |
|
Graphs of Functions of Two Variables |
|
|
567 | (8) |
|
|
575 | (10) |
|
|
585 | (6) |
|
Functions of Three Variables |
|
|
591 | (4) |
|
|
595 | (10) |
|
|
600 | (2) |
|
|
602 | (1) |
|
|
603 | (2) |
|
A Fundamental Tool: Vectors |
|
|
605 | (34) |
|
|
606 | (8) |
|
|
614 | (6) |
|
|
620 | (9) |
|
|
629 | (10) |
|
|
635 | (2) |
|
|
637 | (1) |
|
|
638 | (1) |
|
Differentiating Functions of Several Variables |
|
|
639 | (62) |
|
|
640 | (7) |
|
Computing Partial Derivatives Algebraically |
|
|
647 | (4) |
|
Local Linearity and the Differential |
|
|
651 | (7) |
|
Gradients and Directional Derivatives in the Plane |
|
|
658 | (8) |
|
Gradients and Directional Derivatives in Space |
|
|
666 | (6) |
|
|
672 | (9) |
|
Second-Order Partial Derivatives |
|
|
681 | (8) |
|
|
689 | (12) |
|
|
695 | (3) |
|
|
698 | (1) |
|
|
699 | (2) |
|
Optimization: Local and Global Extrema |
|
|
701 | (34) |
|
|
702 | (8) |
|
|
710 | (8) |
|
Constrained Optimization: Lagrange Multipliers |
|
|
718 | (17) |
|
|
728 | (4) |
|
|
732 | (1) |
|
|
732 | (3) |
|
Integrating Functions of Several Variables |
|
|
735 | (48) |
|
The Definite Integral of a Function of Two Variables |
|
|
736 | (7) |
|
|
743 | (8) |
|
|
751 | (5) |
|
Double Integrals in Polar Coordinates |
|
|
756 | (4) |
|
Integrals in Cylindrical and Spherical Coordinates |
|
|
760 | (9) |
|
Applications of Integration to Probability |
|
|
769 | (5) |
|
Change of Variables in a Multiple Integral |
|
|
774 | (9) |
|
|
777 | (3) |
|
|
780 | (1) |
|
|
781 | (2) |
|
Parameterization and Vector Fields |
|
|
783 | (42) |
|
|
784 | (7) |
|
Motion, Velocity, and Acceleration |
|
|
791 | (8) |
|
|
799 | (5) |
|
The Flow of a Vector Field |
|
|
804 | (5) |
|
|
809 | (16) |
|
|
819 | (3) |
|
|
822 | (1) |
|
|
823 | (2) |
|
|
825 | (38) |
|
The Idea of a Line Integral |
|
|
826 | (8) |
|
Computing Line Integrals Over Parameterized Curves |
|
|
834 | (5) |
|
Gradient Fields and Path-Independent Fields |
|
|
839 | (9) |
|
Path-Dependent Vector Fields and Green's Theorem |
|
|
848 | (15) |
|
|
857 | (3) |
|
|
860 | (1) |
|
|
861 | (2) |
|
|
863 | (24) |
|
The Idea of a Flux Integral |
|
|
864 | (8) |
|
Flux Integrals for Graphs, Cylinders, and Spheres |
|
|
872 | (7) |
|
Flux Integrals Over Parameterized Surfaces |
|
|
879 | (8) |
|
|
882 | (2) |
|
|
884 | (1) |
|
|
884 | (3) |
|
Calculus of Vector Fields |
|
|
887 | (40) |
|
The Divergence of a Vector Field |
|
|
888 | (7) |
|
|
895 | (6) |
|
The Curl of a Vector Field |
|
|
901 | (8) |
|
|
909 | (6) |
|
The Three Fundamental Theorems |
|
|
915 | (12) |
|
|
919 | (4) |
|
|
923 | (1) |
|
|
924 | (3) |
|
|
927 | (24) |
|
A Roots, Accuracy, and Bounds |
|
|
928 | (8) |
|
|
936 | (2) |
|
|
938 | (7) |
|
|
945 | (3) |
|
|
948 | (3) |
Ready Reference |
|
951 | (16) |
Answers to Odd Numbered Problems |
|
967 | (26) |
Index |
|
993 | |